GLOBAL SCAFFOLDING AND FORMWORK MANUFACTURING CENTER

HUBEI ADTO ALUMINIUM FORMWORK MANUFACTURING CO.,LTD

Hubei ADTO Aluminium Formwork Manufacturing Co.,Ltd Factort Address:

GROUP 6, YINSHAN VILLAGE, GUANGQIAO TOWN, JIAYU COUNTY, XIANNING CITY, HUBEI PROVINCE, CHINA

Headquarters:

11F,16F,18F,MINGCHENG INTL BLDG,CHANGSHA CITY,CHINA

TEL:86-731-88660581/88660584

FAX: 86-731-88660576

www.adtomall.com/aluminium-formwork

E-mail:info@adtomall.com

ALUMINUM FORMWORK AND ALUMINUM BEAM

SERVICE PROVIDER OF INTEGRATED ENGINEERING MATERIALS
ENGINEERING SUPPLIES ONE-STOP SERVICE

COMPANY INTRODUCTION

Hubei ADTO Aluminum Formwork Manufacturing Co.,Ltd is one of the best servicer who form the industry chain of design, production, installation, technical service.

The industrial park is located in Jiayu County, Hubei province, with a total investment of 3 billion, covers an area of 2000000 square meter, the output value of more than 10 billion, aluminum alloy template production capacity of more than 10 million square meters, is planned to be completed within six years, then into a world-class aluminium alloy production base. First phase investment of 350 million, covers an area of 2000000 square meter, the production value of 1 billion. We have the first-class technology research and development institutions, relying on the abundant technical research and development strength and brand influence, services more than 50 countries and regions in the world, with the United States, Mexico, Brazil, Singapore, Malaysia, India, China and other countries excellent engineering construction enterprises to establish long-term strategic cooperative relations.

ADTO is aim to create global leading brand aluminum formwork, eagerly anticipates the construction technology of the low carbon environmental protection, continue to improve the popularity of green building construction technology in China, in order to promote the future buildings more low carbon, safer, more economic, more environmental protection.

ALUMINUM FORMWORK SYSTEM

In Building Construction, the costs of aluminum formwork has account 20%-30% for the total costs, when removed the aluminum formwork, it account 5-50% total time. Compare with the traditional formwork, the aluminum formwork have obvious advantages.

EASY:

It is about 22-25kg/m2, light weight means only a single worker could move the Aluminum Formwork easily.

EFFICIENT:

The Aluminum Formwork System is jointed by the pin, it is two times fast than wood formwork to install and dismantle, so it could save more work and work time.

SAVING:

The Aluminum Formwork System supports early-dismantling application, the construction working cycle is 4-5 days per floor, it is effective for cost saving in human resource and construction management The Aluminum Formwork can be re-used more than 300 times, the economic cost is very low of every time using.

SAFETY:

The Aluminum Formwork system adopts the integrative design, it could load 60KN/m2, which could reduce the safety loophole leaded by the construction and materials.

HIGH QUALITY OF CONSTRUCTION:

The aluminum formwork is made by extrusion process, it makes the concrete surface flat smooth. No need heavy backing plaster, effectively for plaster cost saving.

ENVIRONMENT FRIENDLY:

The aluminum material of the formwork could also be recovered after seless, it avoids the waste.

CLEAN

Different with the wood formwork, there is no wood panel. fragment and other waste in the construction area using the aluminum formwork.

WIDELY SCOPE OF APPLICATION:

The Aluminum Formwork System is suited for application of walls, beams, floors, windows, columns, etc.

VALUE MAINTAIN:

The aluminum scrap can be recycled. The recycled price can be 90% of the aluminum ingot.

ALUMINUM FORMWORK AND OTHER ALUMINUM OTHER ALUMINUM CONSTRUCTION MATERIAL (ON)

COMPARISON OF ALUMINUM FORMWORK

and and		_45	and a			- 6 F - ml
1	тне сомн	PARISON C	F DIFFE	ERENT FO	RMWORK	dian G
Items	Plywood formwork	small steel formwork	big steel formwork	Heavy steel frame plywood formwork	Light steel frame plywood formwork	Aluminum formwork
Material	12-18mm thickness plywood	2.3-2.5mm thickness steel plate	5-6mm thickness steel plate	18mm thicknes plywood	15mm thickness plywood	4mm thickness aluminum profile
Thickness	12-18	55	86	120	120	65
Weight	10.5	35-40	80-85	56-68	40-42	18-22
Loading (KN/m²)	30	30	60	60	50	60
Cycle times	5	100	250	200	150	300
Execution	easier	easy	difficult	difficult	easier	easier
Mending fee	lower	low	high	high	high	low
Effectiveness	low	low	high	low	high	higher
Application	Wall, column, beam, bridge	Base, wall, column,beam, slab	Wall	Wall, c	olumn, beam	bridge
Quality of concrete surface	Rough surface	Rough surface, low accuracy	Smooth surface, fair-faced		n surface, can d ornament fa	
Recycle value	low	middle	middle	low	low	high
must using lifting tower or not	Comme (all	no	yes	yes	yes	no

ALUMINUM FORMWORK SPECIALTIES

OUR ALUMINUM FORMWORK

Material	6061-T6aluminum alloy
Panel thickness	4mm
Template thickness	65mm
Template weight	22-25kg/m2
Carrying capacity	60KN/m2

CHEMICAL COMPOSITION

Eleme	ent	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	other	Al
Request	Min	0.4	/	0.15	1	0.8	0. 04	1	/	1	balance
Request	Max	0.8	0. 7	0. 4	0. 15	1.2	0. 35	0. 25	0. 15	0. 05	balance
Result(%)	0. 62	0. 4	0. 19	0. 06	0. 89	0. 08	0. 07	0. 01	0. 02	97. 65

MECHANICAL PROPERTIES

Properties	Tensile strength	Yield strength	Elongation	Har	dness
Troperties	(N/M²)	(N/M²)	(%)	vickers	barcol
Request	285	265	10	13	/17.00.3
Result	285	276	10	13	S17

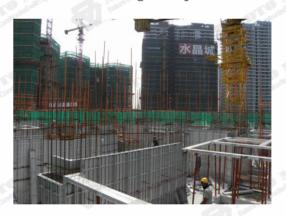
RAW MATERIAL MANUFACTURING

Metlting& Casting

Moulding

Extrusion

Aluminum Profile.


ALUMINUM FORMWORK ADTO-CONVENTIONAL ALUMINUM FORMWORK SYSTEM

Assembling wall panel

Assembling column

Assembling end beam panels

Assembling slab panels

Assembling staircase

Binding rebars and assembling wire&pipes

ALUMINUM FORMWORK ADTO-11-TIEPLATE SYSTEM

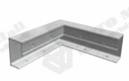
Assembling tie plate

Fixed tie plate

Reinforce the bottom

Assembling sleeve pipe

Assembling inner &outer wall panels


Remove the tie plate

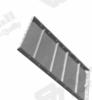
ALUMINUM FORMWORK COMPONENTS

WALL PANEL

Wall panel and Cylinder panel Components. Standard wall panel and nonstandard wall panel are both

INNER CORNER

Main component which connect the panel of inner


BEAM PANEL

Connect the wall panel and the top wall panel.

END OF WALL PANEL PANEL COVER

Shape like WEP, and it was set on the beam.

WALL PANEL

Use for top wall and have both standard and non-standard type.

BEAM SLAB ARCH

Connect the wall panel and tower panel

MIDDLE BEAM

It's a beam for floor building and it was used for connect the wall panel when install

JOIN BAR

Supporting materials when using MB and EB for install the floor

CORNER

FLOOR INNER **FLOOR OUTER** CORNER

Inner component Outer component for for connect the wall connect the wall panel panel and top floor and top floor panel.

WALL END PANEL

Component for the end of the wall panel. Forming the wall panel to different type by pressing one side or two as different angle. Such as: end panel with eage,end panel without eage, connect from the left hand, connect from the right hand and so on. It must be consistent with the floor panel when installing.

FLOOR ANGLE

PRE- EMBEDDED BOX

PANEL Connect the wall panel and helpful discharge the wall panel. It can be fastened with Used for reserving hole which can transfer the panelsin two floor

END BEAM

Connect the wall panel when installing it. It's the component for wall panel structure. It was installed at the end of the floor

PROP HEAD

Connect the join beam when installing the floor panel. It's a beam panel for floor structure. It was installed between two floor panels. And it can unloading load for floor panel.

| ACCESSORIES

ROUND PIN AND WEDGE PIN

Connect the floor panel and wall panel.

BUCKLE PANEL

Use for fix level of the junction between two square panel

FLAT STEEL

It's a material for maintain some space(wall thickness) between panel.

TIE ROD AND NUT

This accessory is used fixing inside and outside wall panel,in case any wall distortion.

| TOOLS

HOLE BARI

Used for adjusting the distance between

PANEL PULLER

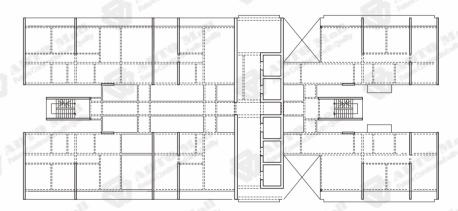
Remove the formwork

DIAGONAL PROP

Used for adjusting the verticality and horizontality.

PROP

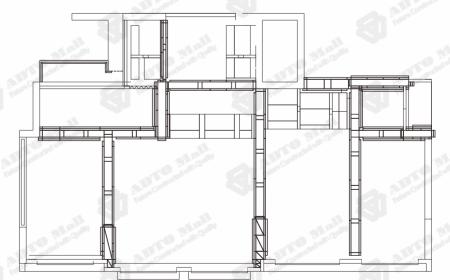
Supporting the weight of floor panel during the concrete construction.


SLEEVE REMOVER

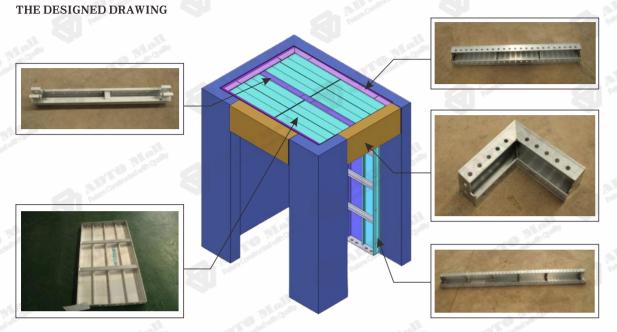
Used for removing the PVC sleeve

THE DESIGN AND TECHNICAL RESEARCH DESPARTMENT

we have professional designer and engineer with many years experiences on this feild.

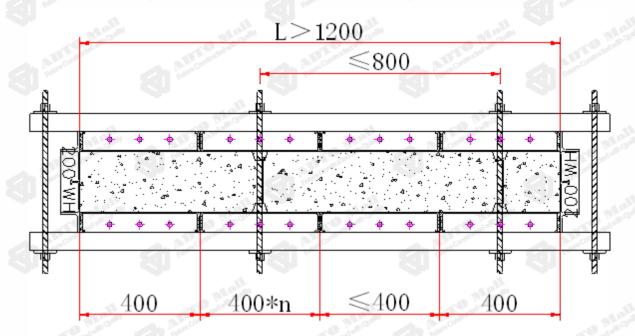

And we spend a mount of funds on technical develop and research to make our products constant updating according to market and customer real requirement.

ANALYSIS OF ENGINEERING DRAWINGS

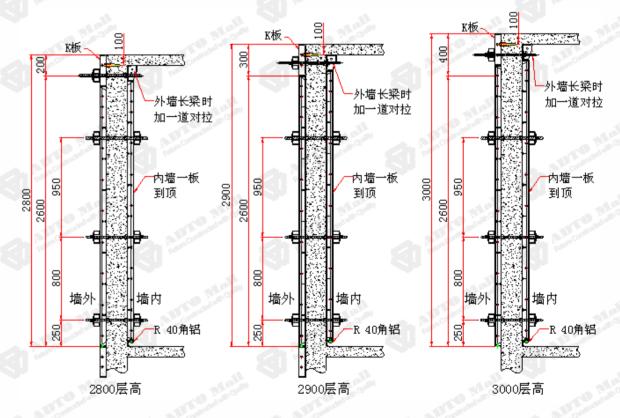


FORMWORK
ARRANGEMENT DRAWING

CUSTOMER CONFIRM

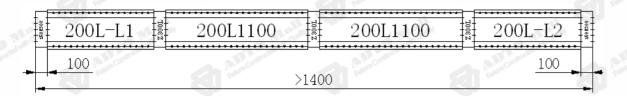

MATCHING ALUMINUM FORMWORK

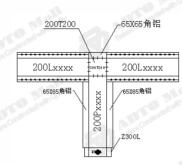
MATCHING THE SLAB PANEL


50	楼面阴角	4. 5 th and			
400 S 1100	400 S 1100	400 S 1100	400 S 1100	400 S 1100	400 S XXXX
400 S 1100	400 S 1100	400 S 1100	400 S 1100	400 S 1100	400 S XXXX
400 S 1100	400 S 1100	400 S 1100	400 S 1100	400 S 1100	400 S XXXX
400 S 1100	400 S 1100	400 S 1100	400 S 1100	400 S 1100	400 S XXXX
400 S 1100	400 S 1100	400 S 1100	400 S 1100	400 S 1100	400 S XXXX
400 S 1100	400 S 1100	400 S 1100	400 S 1100	400 S 1100	400 S XXXX
(100~400) S 1100	(100~400) S 1100	(100~400) S 1100	(100~400) S 1100	(100~400) S 1100	(100 ²² (00) S III

- 1.Slab panel adopt 1100mm long 400mm width for main panel.
- 2.Beteen two steel prop, the distance should be less than 1200mm.

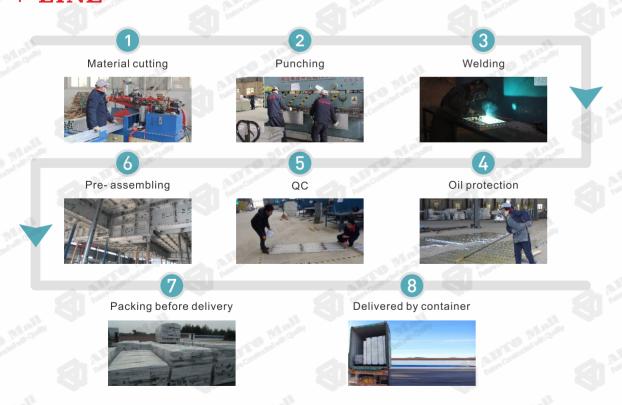
MATCHING THE WALL PANEL


Between two tie rod, the distance should be less than 800mm


Out wall uses four waler to strenghthen.

ALUMINUM FORMWORK AND OTHER ALUMINUM CONSTRUCTION MATERIAL CONSTRUCTION CONS

MATCHING THE BOTTOM BEAM

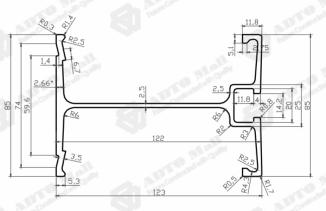


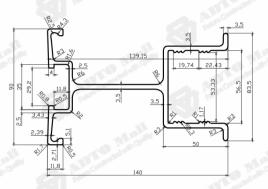
- 1. The standard panel for bottom beam is 1100mm
- 2. Cross beam used prop head to support

THE PRODUCTION LINE

I ALUMINUM BEAMS

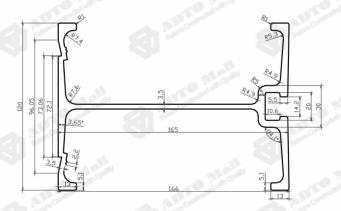
ADVANTAGES:


1. Light weight


5. Residual high

- 2. High strength
- 3. Corrosion resistance
- 4. High turnover frequency

6. Average cost low


BELOWING MAIN SIZES WE DO

123*85mm

140*90mm

120*166mm

The aluminum beam has been the workhorse of the industry for decades. It's strength and lightweight properties provide an optimal combination for the contractor. Aluminum minimize the number of total horizontal and vertical members required on the job compared to wood. Since it's light weight compared to steel, the contractor realized labor productivity through ease of use.

WHY USE ALUMINUM?

- Aluminum can be made into any shape we want; it is more difficult to shape wood.
- Aluminum is isotropic: it has the same properties in all directions. Wood performs better along the grain than across the grain.
- Wood can rot and can be attacked by insects

Control of the Contro							
TYPICAL CHEMICAL PROPERTIES							
0.8							
0.7							
0.4							
0.15							
1.2							
0.35							
0.25							
0.15							

TYPICAL CHEMICAL PROPERTIES					
Tensile Strength ksi	180				
Yield 0.2% Offset ksi	110				
Elongation	14				

ADJUSTABLE STEEL PROP

ADTO steel prop is kind of vertical supporting system that can be fit for any shuttering. Surface: Electro-galvanized, Pre-galvanized, Hot Dipped Galvanized, Painted, Powder-coating.

Advantage:

- * Simple structure, simple erection
 * High efficiency with strong loading capacity
 * With galvanized surface(endurable)
- * Widely applied in proping system such as construction, plants

HEAVY DUTY PROP-MIDDLE EAST OR GERMAN PROP

Min	Max	Internal Tube	External Tube
1.4m	2.7m	48*2.0mm	60*2.0mm
2.0m	3.6m	48*2.0mm	60*2.0mm
2.2m	4.0m	48*2.0mm	60*2.0mm
3.0m	5.0m	48*2.0mm	60*2.0mm

LIGHT DUTY PROP-SPANISH PROP

Min	Max	Internal Tube	External Tube
0.8m	1.4m	40*1.8mm	48*1.8mm
2.0m	3.6m	40*1.8mm	48*1.8mm
2.2m	4.0m	40*1.8mm	48*1.8mm
3.0m	5.0m	40*1.8mm	48*1.8mm

LIGHT DUTY PROP--ITALIAN PROP

Min	Max	Internal Tube	External Tube		
1.6m	2.9m	48*2.0mm	56*2.0mm		
1.8m	3.1m	48*2.0mm	56*2.0mm		
2.0m	3.6m	48*2.0mm	56*2.0mm		
2.2m	4.0m	48*2.0mm	56*2.0mm		

PUSH-PULL PROP

	Min	Max	Internal Tube	External Tube
el ¹	2.2m	4.1m	48*2.0mm	60*2.0mm
	2.5m	4.5m	48*2.0mm	60*2.0mm
	3.0m	5.0m	48*2.0mm	60*2.0mm

HEAVY DUTY PROP AUSTRALIA -PROP

Standard	Closed Length	Open Length	Inner Tubes	Outer Tubes
As3610mm	1080mm	1830mm	48.3*3.0mm	60.3*3.0mm
As3610mm	1830mm	3035mm	48.3*3.0mm	60.3*3.0mm
As3610mm	1985mm	3285mm	48.3*3.0mm	60.3*3.0mm
As3610mm	2600mm	3955mm	48.3*3.0mm	60.3*3.0mm

| CONSTRNCTION SITE

| ONSITE VIEW

Singapore Jurong Plaza Philipine City Center Vanke Country Garden

Sinohydro Group Beijing Urban Construction Group CNPC&SINOPEC

Hengyang—Dong Country Garden

Beijing—Hua Yuanhua Center

Changsha—Vanke Mexi County